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Extinction within the Limit of Validity of the Darwin Transfer Equations. 
II. Refinement of Extinction in Spherical Crystals of SrFz and LiF 
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The extinction-correction formalisms derived in a previous article have been applied to two sets of dif- 
fraction data on spherical crystals. Application to the neutron data on SrFz, collected by Cooper & 
Rouse at three different wavelengths, shows that the theory gives a slightly better fit than a special 
empirical formula used previously to allow for extinction in this data set. A simultaneous refinement on 
all the data varying both particle size and mosaic spread and allowing for primary extinction leads to 
physically reasonable results. It is found that Lorentzian or Fresnellian mosaic-spread distributions fit 
the data considerably better than a Gaussian model. A similar refinement on the two-wavelength data 
on LiF confirms Lawrence's original conclusions that the extinction is mainly of the primary type. 
However, the results are in sharp disagreement with a treatment of the same data by Killean and co- 
workers, in which only secondary extinction was considered. The physical upper limit for the particle 
size in the sample is found to be 1.9 x 10 -4 cm. 

Introduction 

The theoretical aspects of the extinction correction in 
X-ray structure analysis have been discussed exten- 
sively in a previous article (Becker & Coppens, 1974a), 
here referred to as I. It was concluded that the theory 
for X-ray diffraction given by Zachariasen (1967) con- 
tains unjustifiable assumptions. A revised set of for- 
malisms was developed, which gives a reasonable ap- 
proximation to the extinction correction y, in the case 
of a spherical crystal. It will be shown in a forthcoming 
article (Becker & Coppens, 1974b), that the expressions 
for y are similar when more general shapes of crystals 
are considered or when extinction is anisotropic. The 
present article describes the use of the new formalism 
for extinction least-squares refinement. The necessary 
formulae are given in the Appendix. The theory 
is applied to the neutron data on SrF2 (Cooper & 
Rouse, 1970, 1971) and to the X-ray data on LiF 
(Killean, Lawrence & Sharma, 1972). The notations 
are those of I [see the glossary of symbols (Appendix 
E) of I]. 

Summary of the theory 

When applied to a perfect crystal, the equations (1-10) 
lead to the following expression for the primary ex- 
tinction correction: 

f f yp=v-iQ -I ¢r(ei)del dvJo(2ia(ei)Vtlt'~) 
~ o o  

× exp [ -  a(ei) (tl + t2)]. (1) 

* Permanent address: Centre de M6canique Ondulatoire 
Appliqu6e, 23 rue du Maroc, 75019 Paris, France. 

Comparison with calculations based on the dynamical 
theory shows that the solution given by (1) is a reason- 
able approximation in the case of a spherical crystal. 

Use of a theory based on transfer of intensity, 
rather than interference between waves is better 
justified in the case of secondary extinction, where the 
lowering of intensity inside each crystallite is neglected. 
It is shown in I that absorption and extinction effects 
cannot be considered independently if pT>0.50 .  The 
general expression for the secondary extinction correc- 
tion Ys is found to be: 

S l ys=v-lQ-1A*(fl) 6(el)dex dv 
~ o o  l )  

× e x p [ - ( 6 + p ) ( T ~ +  T2) ] Jo(Zi~r(ei)VT~T2). (2) 

When the particle size is sufficiently large for primary 
extinction inside each perfect crystallite to be of 
importance, the overall extinction correction is taken 
in first approximation hs: 

y~y~,ys. (3) 

If the particle size and the mosaic distribution could 
be directly estimated, the absorption-extinction correc- 
tion should be calculated numerically during data 
processing. Such measurements are generally im- 
possible on crystals suitable for structure analysis, 
while a(eO and 6(el) depend on the kinematical struc- 
ture factor which is only known after refinement. 

In the case of spherical crystals, the numerical result 
of integration of (1) or (2) can be fitted by a function of 
the type: 

A,(O)x~ [-1~2 
y , =  l + c , x , +  l + B ~ x , ]  (4) 
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(with i=p or s). The expressions for the primary and 
secondary extinction parameters x,, and x~ are given in 
the Appendix. The values for A~(O) and B~(O) have 
been discussed in I* [equations I-(38, 43, 43a, 44a); 
Tables 5, 6, 7, 8]. 

Zachariasen (1967) introduced two idealized crystal 
types (type I for extinction dominated by mosaic 
spread, type II for extinction dominated by particle 
size). It is shown in I that within the present theory 
(which introduces a factor sin 20 in the particle-size 
dependence of x~), this classification becomes less well 
defined when extinction is severe: even in a crystal 
which would have been previously classified as type I, 
particle-size effects may become dominant at small 
Bragg angles. 

As a result, it may be necessary to consider simul- 
taneously both the particle radius r and the mosaic 
distribution coefficient g in the least-squares refine- 
ment. 

It should be noted that the first-order approximation 
introduced by Zachariasen (1967): 

y~=(1 -t- 2x~) -x/z (5) 

remains valid to within 2% when extinction is not 
severe (y > 0.8), provided that the factor sin 20 is taken 
into account when extinction is particle-size dominated. 

E x t i n c t i o n  in a spher ica l  crys ta l  o f  s t r o n t i u m  f luoride  

The expressions (3) and (4) have been applied to the 
refinement of the neutron data collected by Cooper & 
Rouse (1970, 1971) on strontium fluoride. The struc- 
ture is of fluorite type (ao = 5.794 A) and a sphere of 
radius 1.5 mm was used to measure the diffracted 
intensities for three wavelengths (21=0"746, 22= 
0.865, 23 = 1.077 A 0. The absorption is small enough 
to be neglected in the analysis. The data have been 
corrected for isotropic thermal diffuse scattering 
(Cooper & Rouse, 1968). If I0 is the true Bragg inten- 
sity and ~I0 the contribution from TDS, the measured 
intensity I is: 

I= Io~ + Ioy= Io(cZ + y) (6) 

where y is the extinction correction. The values for 
are tabulated by Cooper & Rouse (1971). 

A main point of interest in this analysis is the con- 
tribution from anharmonic thermal motion (Willis, 
1970); if u, stands for a displacement coordinate, the 
potential is : 

V = V 0 -[- l~(u12 -Jl- ~/2 --]- H32) -[- ~/,/lb/2u3 , 

Since Sr occupies an octahedral site, only the fluorine 
ions are affected, with an effective temperature factor 
(when h + k + l = 2 n +  1)" 

* cl=2 except for a Gaussian mosaic spread for which 
c~=2.12. 

TF(h,k,l)=exp [ -  Wv(h,k,l)] 

(7) 

(Wv is the Debye-Waller factor). 
Substituting the values given by Cooper & Rouse 

(1971), one obtains for the structure factor: 

F=bsr exp ( -  Wsr)+(--1)"0"32 X 10-4bF 

x exp (-- WF)hkl for h + k + l =  2n + 1. (8) 

In the present study, bsr and bE, the coherent neutron 
scattering amplitudes, are taken from a compilation by 
Shull (1972): 

bsr =0.700 (8) × 10 -12 cm; bv=0"565 (5) × 10 -12 cm. 

The maximum effect of anharmonic contribution is 
6 % on the amplitude for the reflection 777 while all 
reflections with hkl larger than 50 are affected by more 
than 1%. This anharmonic contribution was allowed 
for in our calculations but the value for (fl/~3) was 
fixed in expression (8). (If this effect is neglected, only 
the strontium atoms contribute to the calculated 
structure factor when h + k + l=  2n + 1 and as a result, 
a highly biased value for the temperature parameter of 
Sr is obtained.) For the shortest wavelength 21, some 
intensities were affected by anomalous nuclear scat- 
tering and were therefore eliminated from the analysis 
(Cooper & Rouse, 1971). 

The following extinction formalisms were tested,* 
varying the two temperature parameters, the scale fac- 
tor and the extinction parameters Q ( = r / 2 )  and g t  
(only g or Q when the crystal was assumed to be re- 
spectively of type I or of type II): 

1. Zachariasen formalism (1967) (Table 1). Only the 
results for type I are given as the agreement factor was 

* The number of observations is 28 for 21, 52 for 22, 36 for 
23. All refinements described here are based on the minimiza- 
tion of 2 2 2 2 ~w(Fo-k F~). 

"[" In the Tables, the particle radius r(=20) is given instead 
of 0. 

Table 1. Zachariasen formalism (type I) 

R Y. Fo-klFc! 
~Fo 

R~={ ~ w(F°-klFdl2"~m-~-w~oo l 

Rz and R,w corresponding agreement indices based on F 2. 

21 22 ~,3 
Usr(A 2) 0.00761 (43) 0.00684 (28) 0.00547 (50) 
UF 0"01060 (48) 0"01009 (34) 0"00939 (59) 
g.  10 -4 2"45 (34) 2"27 (27) 3"36 (72) 
R 0"022 0"030 0"029 
Rw 0.029 0"035 0"033 
R2 0"038 0.056 0"056 
R,w 0"058 0-070 0"06~ 
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very much higher in the type II refinement (R _ 0.06---- with 2. Extinction becomes more severe when 2 is in- 
compared with R___0.03 for type I). creased; and, as 0 (=r /2)  decreases, the influence of 

2. The original study on SrF2 did not include a 
simultaneous least-squares refinement on the scale, 
temperature and extinction parameters, needed here 
for comparison purposes. The formalism of Cooper & 
Rouse (1970, equation 29, see also I) was applied in this 
sense (Table 2). 

3. The correction based on equations (3) and (4). 
The results for a Lorentzian mosaic distribution are 
given in Table 3. The results, using a Fresnellian 
distribution, were about equally satisfactory and are 
not reproduced here. The Gaussian distribution seems 
less appropriate as it gives a significantly higher value 
of the reliability index R. 

Both the Cooper & Rouse formalism and expres- 
sions (3) and (4) give a significant improvement when 
compared with the Zachariasen correction, which 
considerably underestimates extinction for the most 
severely affected reflections (for the 022 reflection, 
FoZ=42 after correction for extinction, Fc - 49" 2). The 
type I refinements show a significant increase of g 

the particle size at low angles increases with 2. In the 
mixed-type crystal, one may, according to the form- 
alisms, introduce the particle size r as a variable, 
though the very high correlation between 0 and g in 
the refinement of single-wavelength data is not unex- 
pected (~0.99 for 21, 0.97 for 22, 0.92 for 23). When 
refining simultaneously on r and g, the convergence 
could only be obtained for the data collected at 
1.077 A. From the results for 23, the introduction of 
the particle size in the refinement gives an improve- 
ment by a factor two in the agreement factors. Our 
formalism leads to a slightly better agreement than the 
Cooper & Rouse method. For  both treatments, 
temperature parameters obtained at various wave- 
lengths are in good agreement, which is not the case 
when the Zachariasen approximation is used. Primary 
extinction is not negligible (the smallest value of yp 
is 0.9 for the 022 reflection, at 2 =  1.077 A). 

Correlation between r and g is reduced considerably 
when all data are refined simultaneously. The result 

Table 2. Results of  the Cooper-Rouse .formalism 

Type I 
2t 22 23 

Us~(A z) 0-00807 (25) 0.00752 (14) 0-00817 (40) 
Ur 0-01070 (26) 0.01078 (17) 0.01166 (45) 
r(microns) 
g .  10 -4 1"31 (07) 1"42 (06) 1"82 (18) 
R 0"015 0"013 0"020 
R~ 0-017 0.017 0-021 
R2 0"022 0"020 0"042 
R2w 0"035 0"035 0"043 

Mixed type 
23 

0.00742 (17) 
0.01078 (19) 
9.5 (0.7) 
1-36 (14) 
0"009 
0-011 
0.020 
0-021 

Table 3. Present theory 

Type I 
2t 22 23 

Usr(A 2) 0.00803 (28) 0.00742 (16) 0.00763 (28) 
Uv 0.01075 (30) 0.01069 (19) 0.01122 (31) 
/ ' (microns)  
g. 10 -4 1.64 (11) 1.75 (09) 2-35 (18) 
R 0"014 0-016 0"013 
Rw 0.019 0.020 0.016 
R2 0"022 0"026 0"023 
R2w 0'038 0"040 0"031 

Mixed type 
23 

0.00689 (13) 
0.01017 (15) 
9-6 (07) 
1.50 (16) 
0.006 
0.008 
0-013 
0.017 

Table 4. Simultaneous refinements on all data sets 

Cooper & Rouse Lorentzian Fresnellian Gaussian 
correction distribution distribution distribution 

Us, 0-00720 (11) 0.00698 (10) 0.00715 (10) 0.00690 (14) 
UF 0.01041 (13) 0.01016 (12) 0.01028 (11) 0.00998 (16) 
rim! . . . . .  ) 9"6 (8) 11"5 (7) 6"8 (7) 2"20 (15) 
g.  10 -4 1"33 (12) 1"31 (12) 1"17 (08) 0"87 (03) 
R 0"012 0-011 0"011 0"015 
Rw 0-016 0"016 0"016 0"022 
R2 0"023 0"020 0"019 0"029 
B~,y 0"034 0"031 0"031 0"044 
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of such a calculation is given in Table 4, for the func- 
tion of Cooper & Rouse with allowance for primary 
extinction, and the present method with Lorentzian, 
Gaussian and Fresnellian mosaic-spread distributions. 
The Gaussian mosaic-spread distribution can again be 
excluded. The Lorentzian and the Fresnellian distribu- 
tions fit the data about equally, but, as may be ex- 
pected from the properties of these distributions, g 
(Fresnel) is less than g (Lorentz). The correlation fac- 
tor between Q and g decreased appreciably to 0.70. It 
is also worth mentioning that the Lorentzian distribu- 
tion, the Fresnellian distribution and the Cooper & 
Rouse correction lead to the same values for the three 
scale factors. 

The temperature parameters obtained by Cooper & 
Rouse (1971) were in good agreement with the values of 
Table 4: 

Usr=0.00715 (15) A 2 (9) 

UF=0"01070 (16) ~2. 

They were obtained from the reflections that are not 
much affected by extinction. From the comparison of 
(9) with the results of Tables 2, 3, 4, it is clear that the 
correlation between extinction and thermal motion is 
small in the case of SrFz. 

The general expression (3) for extinction gives a 
very consistent fit to the severely affected intensities 
(y~0-41 for the high-order reflection 844 at 23= 
1.077 •) indicating that the formalism is physically 
realistic. The formalism of Cooper & Rouse gives a 
similar agreement for strong reflections, but it has 
been derived such as to give an optimal fit to the 0 
dependence of the extinction in the SrF2 data sets. It 
is satisfying that the present theory which has been 
derived from first principles gives a somewhat better 
fit to extinction in the all-wavelength data refinement. 

Extinction in a spherical crystal of lithium fluoride 

Lawrence (1972) has recently studied extinction in a 
large single crystal of LiF (NaC1 structure type, a0 = 
4.027 fk) using Mo Ke X-rays. As the measured inten- 
sities of symmetry-equivalent reflections are approxi- 
mately the same, Lawrence concludes that the extinc- 
tion is independent of the path length through the crys- 
tal and therefore mainly of primary type. From the 
published intensities of the symmetry-equivalent re- 
flections {622} (y=0.85), a mean intensity of 
23.40 (+0-16) is derived. The maximum deviation of 
the mean is > 1, which seems significant. Unfortunate- 
12y, the set {200} for which y is equal to 0.17 is not listed 
and no Friedel pairs were measured. It thus appears 
that a small contribution from particle anisotropy for 
low Bragg angles (where Q sin 20/g is the smallest) 
cannot be ruled out. Using the Zachariasen formalism, 
Lawrence estimates the particle size to be 2.8 x 10 -3 
cm. A similar estimate is found with the formalism of 
our general theory, which gives values for r in the 

range (2.6 x 10 -3 cm-3 x 10 -3 cm), except for the re- 
flections 111 and 200. 

From the same batch of material, Killean et al. 
(1972) ground a small sphere of radius 0.21 mm and 
collected sets of reflections with Mo Kc~ radiation (52 
reflections) and Cu Kc~ (9 reflections, corrected for 
absorption since/zR=0.68). Four reflections from the 
Mo Ke set are affected by extinction (y>_0.95), while 
all the 9 Cu Ke reflections are affected (y>0.80). 
Killean et al. assume the extinction to be of secondary 
type and get for the mean particle radius 1-5 x 10 - 6  

cm. From comparison of this result with the value 
given by Lawrence, Killean et al., conclude that 'the 
practice of including an extinction parameter in a least- 
squares analysis has little validity'. It seems obvious, 
however, that a secondary-extinction theory may not 
be valid for a sample in which extinction is almost 
exclusively of the primary type. Furthermore, the 
results are obtained by trial and error rather than by 
systematic least-squares refinement. To elucidate to 
what extent the present theory fits extinction in LiF, 
the two sets of data were refined, with allowance for the 
sin 20 dependence of the effective particle size. It was 
clear from the copper radiation set* that the extinction 
is dominated by the particle size (R ~ 0.005 for type II, 
R=0.011 for type I). The particle size, assuming 
secondary extinction only, was 1.8 x 10 - 6  cm, a value 
similar to earlier results by Killean et al. 

The primary extinction correction to be applied has 
the same mathematical form as a type II secondary 
extinction, except that rR (=~rT)  is replaced by r 2 
in the expression for x. The results of a simultaneous 
refinement on both wavelength sets are given in Table 
5. The particle radius r is found to be 1.9 x 10 - 4  cm, 
in much better agreement with conclusions based on 
the dislocation density (Killean et al., 1972), especially 
if the grinding of the X-ray specimen is considered. 

The real mean value of the particle radius cannot be 
larger since allowance for secondary extinction will 
reduce the primary extinction and therefore the effec- 
tive radius. This value must be accepted as a physically 
realistic upper limit since it was shown in article I that 
the present theory agrees with dynamical calculations 
for a spherical crystal and small primary extinction. 

Thus it follows that the conclusions drawn by 
Killean et al., (1972) are premature and that a modified 
extinction refinement allowing for the primary nature 
of extinction in the crystal of LiF is in reasonable 
agreement with information derived from the disloca- 
tion density in a different specimen of the same batch 
of material. 

We gratefully acknowledge partial support of this 
work by the Petroleum Research Fund administered 
by the American Chemical Society, and the National 
Science Foundation. 

* The absorption-weighted path length ir u was considered 
for each reflection of the copper set. 



152 E X T I N C T I O N  W I T H I N  THE LIMIT  OF THE D A R W I N  T R A N S F E R  E Q U A T I O N S .  II 

Table 5. Re f inemen t  of LiF based  on Mo Ka and  Cu K~ sets o f  data  

Uu (A z) Uv (A ~) r R R,~ 
Present analysis 0.01159 (20) 0.00832 (7) 1.9 (2)/2 0.013 0.011 
Killean et al. analysis 0-01220 0.00861 1.5 x 10 -~ cm 

R2 R2w 
0"027 0"022 

APPENDIX 
Expressions necessary to calculate the 

normal equations in a least-squares routine when 
extinction parameters are included 

Let s be the scale factor, F~ the absolute value of the 
calculated structure factor, Fg the kinematical scaled 
structure factor and F the scaled extinction-affected 
structure factor: 

F~ =sF~ 

r 2 --- s2F2y = r 2 y .  (A 1) 

A structural parameter will be represented by P. 
In the isotropic case, the two extinction parameters are 
g and ¢ (=r/2). 

Let x~ and Xs be the appropriate values of x in case 
of primary and secondary extinction respectively: 

K ),~F~¢ = K2~ ,  p ~  2 2 2  

X~ = K Z y , F ~ v  = K2~,, (A2) 

where V is either ~uo or ~L, depending on the mosaic 
distribution, 

{ ~02sin220} t'2 
V~=O/ 1 + g-----r~ (A3) 

and with 

sin 201 (A4) 

,~4 

yp = ½--V-- ~ a z 

23 
~,~ = ~ aZT., (A5) 

in which T. is the absorption-weighted path length 
given by 

L=v-'A*(a) f(T~ + Ti) exp [-/z(T~ + T2)]dv. 

In the neutron diffraction case, 

Y=Yp( ( , )Y , (~s )  , (A6) 
where 

{ A,,~ }-v2 
y,(~,)= 1 +c ,~ ,+  1 +B,~, for i = s , p .  (A7) 

cp is equal to 2. 
When primary extinction is neglected, ~o is put equal 

to zero. Let z~(~) be the function 

1 dy~ 
z , ( ~ )  - (A8a) 

y~ d~  

z~(~3 = -½y~, {c, + A,~, (12-+ &~YJBg' [ (aSh) 

(zp is put equal to zero when primary extinction is 
neglected). 

In the X-ray diffraction case, let v and v0 be: 

v = cos 2 20 

Vo = cos 2 20M (.49) 

where 0M is the Bragg angle of the monochromator. If 
the beam is unpolarized, v0 is equal to 1. y is then given 
by 

y =  {Voy , (~ , )y , (~)  + vy,(v~v)Y~(V~)}/(Vo + v) 

={VoYo+VY~}/(Vo+V).  (A10) 

The derivatives are listed in Table 6, in which ..... OV 8g 

and -~ -a r e  given by" 

8~u 
1. crystal of type I -3g-= 1/sin 20 (A 11) 

2. crystal of type II - ~  = 1 (A 12) 

3. General case 

Table 6. Table o f  derivatives 

Refinement on F 2 

0F 2 tgFk 2 
Os =Y" OS 

OF 2 O Fk 2 
- -  = ~t-21 _ _  

OP OP 
0 F 2 _  2--4 O~/ a~- s  ~o ~,~2 eg 
0F 2 

- -  s2F 4 g2a 
O0 

Neutron diffraction case 

t~l =y{1 + GzAG) + ~z~(~) } 
t22 =yz~(~3 

f 

X-ray diffraction case 

Refinement on F 

3s & 

O F - - f i n  - OFk 
~ p g 2 , -ff ff 

O_ F = ½sFa ~ )',Y- xl2 g22 - -  
@ 

~F _ ½sF3¢ y -  t[2 fl3 
80 

1 -Ql = ~ {VoYo[1 + ~pzp(~p) + ~Zs(~s)] + v2yv[1 + ~pzp(v~p) 

+ ~sz~(v~Ol } 
1 

Q~ = ~ {voyozA~O + v'y,,:Xv~3} 

1 { 0~ 
• ~3 = ~o+-V 27.Q[voYoZo(~p) + v2yvz.(v~)l + y~ -OQ [VoYoZs(~s) 

+ v'y~z~(v~3] } 

0~ 
@ 
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- Gaussian or Fresnellian distribution 

3~o- = (~'d~)3 

c3gt~ 
-~g . . . .  (~u~/g) 3 sin 2 20 

- Lorentzian distribution: 

~/L 
- (~u , / e )  2 

(AI3) 

~¢L c~g =(~L/g)2 sin 20. (A14) 
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Tehebyeheff Extraction of the Periodic Vector Set from the Patterson Function 
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The image-seeking method of Buerger and the procedure of Tokonami and Hosoya appear to be 
capable of dealing with complex crystal structures via the Patterson function, provided that the periodic 
vector set is accurately determined. Unfortunately, a general and powerful method for the location 
of peaks in the Patterson function has not yet been developed, and it is the lack of such a method which 
now prevents the formulation of a general Patterson method of structure analysis. This paper presents 
further results in the author's attempts to formulate a general method of vector-set extraction by rep- 
resenting the Patterson function as a linear generalized polynomial in a system of independent inter- 
atomic functions. This approach has the advantage in that the essentially non-linear problem of vector- 
set extraction is reduced to an apparently simple linear problem, namely that of determining the co- 
efficients of the approximating polynomial. In the present paper, the Tchebycheff approximation norm 
is employed with coefficient determination by linear-programming procedures. Since linear-program- 
ming methods are flexible and extremely powerful, this Tchebycheff vector-set-extraction procedure is 
much more promising than the author's earlier published methods, which were based on interpolatory 
approximations. 

Introduction 

In order to formulate a general method of structure 
analysis, one would naturally think of working in 
terms of the Patterson function, since this function is 
not restricted to centrosymmetric structures. It is well 
known that the Patterson function may be regarded as 
a badly resolved representation of the weighted periodic 
vector set (Buerger, 1959). For a crystal containing N 
atoms per unit cell, the weighted periodic vector set 
consists of N periodic images of the crystal structure, 
and the phase problem is essentially the problem of 
separating the various points of the periodic vector set 
into these images. This separation can be accomplished 
by the image-seeking method of Buerger (1950) or the 
procedure of Tokomami & Hosoya (1965). Since 

neither of these methods has been widely used in 
practice, it might well be that their power is restricted 
in some ways which are not now apparent. At present, 
however, it appears that they could be successfully 
applied to extremely complex crystals, provided the 
weighted periodic vector set could be accurately deter- 
mined. 

In the past, the determination of the periodic vector 
set from the Patterson function has been attempted 
via various sharpening procedures (Patterson, 1934; 
Wunderlich, 1965). These sharpening methods depend 
to a large extent on the initial resolution of the Patter- 
son function, and therefore they do not appear to be 
capable of dealing with complex structures which 
produce badly resolved Patterson functions. Certain 
other methods, which in effect locate individual peaks 


